Family, GSDs, USA, our Warriors. 19th President Trump. Patriot. D5 & 5D
A blood clot med called Pra.... made by BI was recently approved for use in children 3 months - just under 12 years, the FDA was happy to announce.
Why are children at risk for blood clots now?
F indeed.
First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli.
Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.
The sudden and uncontrollable paedophilia exhibited by a 40-year-old man was caused by an egg-sized brain tumour, his doctors have told a scientific conference. And once the tumour had been removed, his sex-obsession disappeared.
The cancer was located in the right lobe of the orbifrontal cortex, which is known to be tied to judgment, impulse control and social behaviour. But neurologists Russell Swerdlow and Jeffrey Burns, of the University of Virginia at Charlottesville, believe it is the first reported case linking damage to the region with paedophilia.
“We’re dealing with the neurology of morality here,” says Swerdlow. Since the area does not affect physical health, “it’s one of those areas where you could have a lot of damage and a doctor would never suspect something’s wrong,” he says.
“He wasn’t faking,” says Burns. “But if someone argues that every paedophile needs a MRI, the difference in this case was that the patient had a normal history before he acquired the problem. Most paedophiles develop problems early on in life.”
Infection with the Epstein-Barr virus (EBV) increases the risk of CNS lymphoma. EBV is more commonly known as the virus that causes mononucleosis or “mono.” In other research, high levels of a common virus called cytomegalovirus (CMV) have been found in brain tumor tissue.
cytomegaloviral (not comparable)
Relating to cytomegaloviruses.
New Latin, from English cyto- (“cell”) + Ancient Greek μέγας (mégas, “big, megalo-”) + -virus.
Iris is a genus of 260–300[1][2] species of flowering plants with showy flowers. It takes its name from the Greek word for a rainbow, which is also the name for the Greek goddess of the rainbow, Iris. Some authors state that the name refers to the wide variety of flower colors found among the many species. As well as being the scientific name, iris is also widely used as a common name for all Iris species, as well as some belonging to other closely related genera. A common name for some species is 'flags', while the plants of the subgenus Scorpiris are widely known as 'junos', particularly in horticulture. It is a popular garden flower.
A rainbow shows up as a spectrum of light: a band of familiar colors that include red, orange, yellow, green, blue, and violet. ... Biv" is an easy way to remember the colors of the rainbow, and the order in which they appear: red, orange, yellow, green, blue, indigo, and violet.
Autism is a severe developmental disorder with poorly understood etiology. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Lipid peroxidation markers are elevated in autism, indicating that oxidative stress is increased in this disease. Levels of major antioxidant serum proteins, namely transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein), are decreased in children with autism.
There is a positive correlation between reduced levels of these proteins and loss of previously acquired language skills in children with autism. The alterations in ceruloplasmin and transferrin levels may lead to abnormal iron and copper metabolism in autism. The membrane phospholipids, the prime target of ROS, are also altered in autism.
The levels of phosphatidylethanolamine (PE) are decreased, and phosphatidylserine (PS) levels are increased in the erythrocyte membrane of children with autism as compared to their unaffected siblings. Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism.
Furthermore, environmental and genetic factors may increase vulnerability to oxidative stress in autism. Taken together, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease. A mechanism linking oxidative stress with membrane lipid abnormalities, inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of autism is proposed.
“I do set my bow in the cloud, and it shall be for a token of a covenant between me and the earth.”
The effects of Asperger’s and autistic spectrum disorder (ASD) on everything from depression to gender dysphoria could be being overlooked, according to a world-renowned expert on the syndrome. Tony Attwood, a clinical psychologist based in Australia, believes that more screening is needed to help people with the condition who present with other psychological problems, from anorexia nervosa to borderline personality disorder.
Most controversially, he believes society needs to tackle the taboo subject of ASD and paedophilia. Speaking ahead of World Autism Awareness Day today, he suggested that many inmates in sex offender units, including those convicted of child pornography offences, show signs of Asperger’s or ASD.
Oxidative stress plays a critical role in nanotoxicity. Various types of nanoparticles are known to induce oxidative stress by generating intracellular reactive oxygen species (ROS). Cellular uptake of nanoparticles and intracellular metal ion release are important factors for intracellular ROS generation.
Reactive oxygen species (ROS) are by-products of aerobic metabolism and can also act as signaling molecules to participate in multiple regulation of biological and physiological processes. The occurrence, growth and metastasis of tumors, and even the apoptosis, necrosis and autophagy of tumor cells are all closely related to ROS.
Summary: Pedophilia might be the result of faulty connections in the brain. A new study showed that pedophiles had significantly less "white matter." The study challenges the commonly held belief that pedophilia is brought on by childhood trauma or abuse.
Childhood adversity is a potent risk factor for mental health conditions via disruptions to stress response systems. Dysregulations in oxidative stress systems have been associated with both childhood adversity and several psychological disorders (e.g., major depressive disorder) in adult populations. However, few studies have examined associations between childhood adversity, oxidative stress, and mental health in pediatric populations.
Childhood adversity (Adverse Childhood Events [ACE]), oxidative stress [F2t-isoprostanes (IsoPs)], and mental health pathology were assessed in 50 adolescent females recruited primarily through the Department of Youth Services. Standard ordinary least squares regression models were run co-varying for age, race/ethnicity, adolescent nicotine use, study condition, and parent history of ACEs. Adolescents who reported experiencing four or more ACEs had significantly elevated IsoP levels.
Further, internalizing symptom scores across diagnoses were significantly associated with elevated IsoPs, whereas no externalizing symptoms scores, except Attention Deficit Hyperactivity Disorder, were related to altered oxidative stress. Results indicate that IsoPs may be a global marker of childhood adversity and mental health symptomatology, particularly within internalizing symptom domains. A limitation is that body mass index was not collected for this sample. Future studies are needed to replicate and extend these findings in larger, more diverse samples.
Several investigators have suggested a link between oxidative stress and certain anxiety disorders [obsessive-compulsive disorder and panic disorder], demonstrating that oxidative metabolism, can affect the regulation of anxiety.
Biochemical integrity of the brain is vital for normal functioning of the central nervous system (CNS). One of the factors contributing to cerebral biochemical impairment is a chemical process called oxidative stress. Oxidative stress occurs upon excessive free radical production resulting from an insufficiency of the counteracting antioxidant response system. The brain, with its high oxygen consumption and lipid-rich content, is highly susceptible to oxidative stress.
Therefore, oxidative stress–induced damage to the brain has a strong potential to negatively impact normal CNS functions. Although oxidative stress has historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer disease, Huntington disease, and Parkinson disease, its involvement in neuropsychiatric disorders, including anxiety disorders and depression, is beginning to be recognized. This review is a discussion of the relevance of cerebral oxidative stress to impairment of emotional and mental well-being.
Significant amounts of oxygen free radicals (oxidants) are generated during cerebral ischemia/reperfusion, and oxidative stress plays an important role in brain damage after stroke. In addition to oxidizing macromolecules, leading to cell injury, oxidants are also involved in cell death/survival signal pathways and cause mitochondrial dysfunction.
Experimental data from laboratory animals that either overexpress (transgenic) or are deficient in (knock-out) antioxidant proteins, mainly superoxide dismutase, have provided strong evidence of the role of oxidative stress in ischemic brain damage. In addition to mitochondria, recent reports demonstrate that NADPH oxidase (NOX), an important pro-oxidant enzyme, is also involved in the generation of oxidants in the brain after stroke. Inhibition of NOX is neuroprotective against cerebral ischemia. We propose that superoxide dismutase and NOX activity in the brain is a major determinant for ischemic damage/repair and that these major anti- and pro-oxidant enzymes are potential endogenous molecular targets for stroke therapy. Antioxid. Redox Signal. 14, 1505–1517.
Quantum dots (QDs) are luminescent nanoparticles with unique optical properties that have been exploited for single-cell and whole-animal imaging. When coated with proteins or biocompatible polymers, QDs are not deleterious to cells and organisms. However, when QDs are retained in cells or accumulated in the body for a long period of time, their coatings may be degraded, yielding “naked” QDs. Here, we show that “naked” QDs induce damage to the plasma membrane, mitochondrion, and nucleus, leading to cell death. Reactive oxygen species (ROS) are important players in mediating QD-induced cellular damage. QD-induced cytotoxicity can be reduced or even eliminated without covalent binding of protective agents to the QD surface. Results from these studies suggest the critical role of several subcellular compartments in QD-induced cytotoxicity and point toward multiple molecular targets in nonclassical apoptosis.
Due to the strong oxidation potential, the excess ROS induced by nanoparticles can result in the damage of biomolecules and organelle structures and lead to protein oxidative carbonylation, lipid peroxidation, DNA/RNA breakage, and membrane structure destruction, which further cause necrosis, apoptosis, or even mutagenesis.
The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure.
Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage.
NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed.