(For a friend)
https://www.invega.com/invega-side-effects-schizoaffective-disorder-treatment.html
https://www.nami.org/About-Mental-Illness/Treatments/Mental-Health-Medications/Types-of-Medication/Paliperidone-(Invega)
https://en.m.wikipedia.org/wiki/Paliperidone
https://en.m.wikipedia.org/wiki/Nanocrystalline_material
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00374/full
https://www.degruyter.com/document/doi/10.1515/nanoph-2020-0489/html
https://en.m.wikipedia.org/wiki/Nanocrystal
https://www.beilstein-journals.org/bjoc/articles/8/39
(Then this)
Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V− 1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display.
The word piezoelectricity comes from the Greek word piezein, which means squeeze or press and electron, which means “amber” and is an ancient source of electric charge. ... Piezoelectric materials allow conversion of energy from the mechanical domain to the electrical domain and vice versa.
A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934.[1][2] A gas of electrons moving in 2D or 3D in a uniform, inert, neutralizing background will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important.
To minimize the potential energy, the electrons form a bcc (body-centered cubic) lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed.[3] A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner-crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.
Magnons, electron spin waves, can be controlled by a magnetic field. Densities from the limit of a dilute gas to a strongly interacting Bose liquid are possible. Magnetic ordering is the analog of superfluidity. The condensate appears as the emission of monochromatic microwaves, which are tunable with the applied magnetic field.
In 1999 condensation was demonstrated in antiferromagnetic TlCuCl3,[16] at temperatures as large as 14 K. The high transition temperature (relative to atomic gases) is due to the small mass (near an electron) and greater density. In 2006, condensation in a ferromagnetic Yttrium-iron-garnet thin film was seen even at room temperature[17][18] with optical pumping. Condensation was reported in gadolinium in 2011.[19] Magnon BECs have been considered as qubits for quantum computing.
Complete answer:
The process of transformation of viral components into organized solid particles is known as crystallization. The inactive form of the virus can be changed into crystals and it includes a large number of viral particles.
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection.
Oxidative Stress in Schizophrenia
Increasing evidence indicates that oxidative damage exists in schizophrenia. Available literature about possible mechanisms of oxidative stress induction was reviewed. Furthermore, possibilities of measuring biomarkers of schizophrenia outside the central ...
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131721/Oxidative Stress in Schizophrenia: An Integrated Approach
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently ...
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021756/