Teacher.Medical provider.IT lead 17 yrs.1st Gen Auschwitz survivor.Pro-Constitution.Like not=to support.DRAIN THE SWAMP ALL OF IT! TRUMP2021

In response The Mac to his Publication

"The intelligence agencies of the West r not confronting China - they're copying China: total 24/7 surveillance, AI, 5G. The totalitarian nightmare is being imported to free countries." - EmeraldRobinson, Newsmax,7-11-21

GeorgePapadopoulos,4-20-20: "Brennan: 'We put 2gether a Fusion Center at CIA that brought NSA &FBI officers 2gether w CIA to make sure that those proverbial dots would be connected.' CIA involved in targeting me and other Americans....BIG problem!"

“Domestic Terrorism Against an Individual...Because the [covert] crimes of Organized [Gang] Stalking, Electronic Torture and Mind Control are United States Government conceived and generated crimes, these crimes often utilize Military technologies not available to or even known about by the general public...It’s the most MASSIVE of all illegal activities, a well-guarded secret in the world today.” - The Invisible Crime, Prt2, Michael F Bell.

President Trump,4-6-20: "Human trafficking utilizing TECHNOLOGY…"

In response Lesley Seplaki to her Publication
In response The Mac to his Publication

Quantum illumination is a paradigm for target detection that employs quantum entanglement between a signal electromagnetic mode and an idler electromagnetic mode, as well as joint measurement of these modes. The signal mode is propagated toward a region of space, and it is either lost or reflected, depending on whether a target is absent or present, respectively. In principle, quantum illumination can be beneficial even if the original entanglement is completely destroyed by a lossy and noisy environment.

In response The Mac to his Publication

A microwave-range model of a quantum radar was proposed in 2015 by an international team[6] and is based on the protocol of Gaussian quantum illumination.[7] The basic concept is to create a stream of entangled visible-frequency photons and split it in half. One half, the "signal beam", goes through a conversion to microwave frequencies in a way that preserves the original quantum state. The microwave signal is then sent and received as in a normal radar system. When the reflected signal is received it is converted back into visible photons and compared with the other half of the original entangled beam, the "idler beam".

In response The Mac to his Publication

Many quantum information applications, such as quantum teleportation,[1] quantum error correction, and superdense coding, rely on entanglement. However, entanglement is a fragile quantum property between particles and can be easily destroyed by loss and noise arising from interaction with the environment, leading to quantum decoherence. Entanglement is therefore considered very hard to use in lossy and noisy environment.

Lloyd, Shapiro and collaborators showed that even though entanglement itself may not survive, the residual correlation between the two initially entangled systems remains much higher than any initial classical states can provide. This implies that the use of entanglement should not be dismissed in entanglement-breaking scenarios.

In response The Mac to his Publication

Quantum illumination takes advantage of this stronger-than-classical residual correlations between two systems to achieve a performance enhancement over all schemes based on transmitting classical states with comparable power levels. Quantum illumination is particularly useful in extremely lossy and noisy situations.

Although most of the original entanglement will be lost due to quantum decoherence as the microwaves travel to the target objects and back, enough quantum correlations will still remain between the reflected-signal and the idler beams. Using a suitable quantum detection scheme, the system can pick out just those photons that were originally sent by the radar, completely filtering out any other sources. If the system can be made to work in the field, it represents an enormous advance in detection capability.

In response The Mac to his Publication

Only people mentioned by @TheMac in this post can reply

In response The Mac to his Publication

One way to defeat conventional radar systems is to broadcast signals on the same frequencies used by the radar, making it impossible for the receiver to distinguish between their own broadcasts and the spoofing signal (or "jamming"). However, such systems cannot know, even in theory, what the original quantum state of the radar's internal signal was. Lacking such information, their broadcasts will not match the original signal and will be filtered out in the correlator. Environmental sources, like ground clutter and aurora, will similarly be filtered out.

In response The Mac to his Publication

The concept of quantum illumination was first introduced by Seth Lloyd and collaborators at MIT in 2008.[2][3] A theoretical proposal for quantum illumination using Gaussian states[4] was proposed by Jeffrey Shapiro and collaborators.[3]

The basic setup of quantum illumination is target detection. Here the sender prepares two entangled systems, called signal and idler. The idler is retained while the signal is sent to probe the presence of a low-reflectivity object in a region with bright background noise. The reflection from the object is then combined with the retained idler system in a joint quantum measurement providing two possible outcomes: object present or object absent. More precisely, the probing process is repeated many times so that many pairs of signal-idler systems are collected at the receiver for the joint quantum detection.

(1) Show this thread