Hiker-Kayaker-Bicyclist-Paddleboarder (⊙﹏⊙✿) life➭the way I see it, posted here ☯︎_0️⃣social.creditz
black lives "matter"
matter meaning MASS (a collection of atoms)
manipulating in the mass material world
they don't give a shit
deep fake mind manipulatuon
MEDIA = MEDIUM
black majick
Planar Lipid Bilayers (BLM's)
Standing waves were first noticed by Michael Faraday in 1831. Faraday observed standing waves on the surface of a liquid in a vibrating container. Franz Melde coined the term "standing wave" (German: stehende Welle or Stehwelle) around 1860 and demonstrated the phenomenon in his classic experiment with vibrating strings.
This phenomenon can occur because the medium is moving in the opposite direction to the wave, or it can arise in a stationary medium as a result of interference between two waves traveling in opposite directions. The most common cause of standing waves is the phenomenon of resonance, in which standing waves occur inside a resonator due to interference between waves reflected back and forth at the resonator's resonant frequency.
For waves of equal amplitude traveling in opposing directions, there is on average no net propagation of energy.
In physics, a standing wave, also known as a stationary wave, is a wave which oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes.
Quantum confinement effects describe electrons in terms of energy levels, potential wells, valence bands, conduction bands, and electron energy band gaps. The quantum confinement effect is observed when the size of the particle is too small to be comparable to the wavelength of the electron.
Confinement energy is a very important property of quantum dot. In this study, quantum confinement energy of a quantum dot is concluded to be h2/8md2 (d being the diameter of the confinement) and not h2/8ma2 (a being the radius of the confinement), as reported in the available literature.
Unique optical properties of nanomaterials arise due to their quantum size effect, which is caused by the confinement of electrons within particles of dimensions smaller than the bulk counterpart (Daniel and Astruc, 2004).