What good is a mask unless it is a photomask?

...as the vaccine is activated through the eyes?

Bastards.

Blunt to the point of abrasive..I shoot from the hip.. AM directed by the heart .. tempered by the 🧠

In response The Mac to his Publication

woukd ray bans help??

In response Lisa Daigle to her Publication

Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light.

In response The Mac to his Publication

The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane–electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.
😎

In response The Mac to his Publication

A beam of light has radial polarization if at every position in the beam the polarization (electric field) vector points towards the centre of the beam. In practice, an array of waveplates may be used to provide an approximation to a radially polarized beam. In this case the beam is divided into segments (eight, for example), and the average polarization vector of each segment is directed towards the beam centre.

In response The Mac to his Publication

Radial polarization can be produced in a variety of ways. It is possible to use so-called q-devices[2] to convert the polarization of a beam to a radial state. The simplest example of such devices is inhomogeneous anisotropic birefringent waveplate that performs transversally inhomogeneous polarization transformations of a wave with a uniform initial state of polarization.

In response The Mac to his Publication

The other examples are liquid crystal,[3] and metasurface q-plates. In addition, a radially polarized beam can be produced by a laser, or any collimated light source, in which the Brewster window is replaced by a cone at Brewster's angle. Called a "Rotated Brewster Angle Polarizer," the latter was first proposed and put into practice (1986) to produce a radially-polarized annular pupil by Guerra [4] at Polaroid Corporation (Polaroid Optical Engineering Dept., Cambridge, Massachusetts) to achieve super-resolution in their Photon Tunneling Microscope. A metal bi-cone, formed by diamond-turning, was mounted inside a glass cylinder. Collimated light entering this device underwent two air-metal reflections at the bi-cone and one air-glass reflection at the Brewster angle inside the glass cylinder, so as to exit as radially-polarized light. A similar device was later proposed again by Kozawa.[5]

In response The Mac to his Publication

A related concept is azimuthal polarization, in which the polarisation vector is tangential to the beam. If a laser is focused along the optic axis of a birefringent material, the radial and azimuthal polarizations focus at different planes. A spatial filter can be used to select the polarization of interest.[6] Beams with radial and azimuthal polarization are included in the class of cylindrical vector beams.[7]

A radially polarized beam can be used to produce a smaller focused spot than a more conventional linearly or circularly polarized beam,[8] and has uses in optical trapping.

In response The Mac to his Publication

Isolating neutral and charged particles from the environment is essential in precision experiments. For decades, this has been achieved by trapping ions with radio-frequency (rf) fields and neutral particles with optical fields. Recently, trapping of ions by interaction with light has been demonstrated. This might permit combining the advantages of optical trapping and ions. For example, by superimposing optical traps to investigate ensembles of ions and atoms in absence of any radiofrequency fields, as well as to benefit from the versatile and scalable trapping geometries featured by optical lattices. In particular, ions provide individual addressability, electronic and motional degrees of freedom that can be coherently controlled and detected via high fidelity, state-dependent operations. Their long-range Coulomb interaction is significantly larger compared to those of neutral atoms and molecules.

In response The Mac to his Publication

This qualifies to study ultra-cold interaction and chemistry of trapped ions and atoms, as well as to provide a novel platform for higher-dimensional experimental quantum simulations. The aim of this topical review is to present the current state of the art and to discuss current challenges and the prospects of the emerging field.

In response The Mac to his Publication

Only people mentioned by @TheMac in this post can reply

No replys yet!

It seems that this publication does not yet have any comments. In order to respond to this publication from The Mac, click on at the bottom under it